100 City Parkway, Suite 700 • Las Vegas, NV 89106
MAILING ADDRESS: P.O. Box 99956 • Las Vegas, NV 89193-9956
(702) 862-3400 • snwa.com

October 14, 2009

Penny Woods, Project Manager Nevada Groundwater Projects Bureau of Land Management 1340 Financial Blvd PO Box 12000 Reno, NV 89520-0006

Dear Penny:

SUBJECT:

UPDATED ESTIMATED PROJECT CONSTRUCTION COSTS, CLARK

LINCOLN AND WHITE PINE COUNTIES GROUNDWATER

DEVELOPMENT PROJECT (N-78803)

Attached is an updated construction cost estimate for the Southern Nevada Water Authority's (SNWA) Clark, Lincoln and White Pine Counties Groundwater Development Project. This cost estimate addresses all of the facilities identified in the December 2008 Conceptual Plan of Development. It has been developed by SNWA using best available information on recent historical costs for similar project components, for use by the Bureau of Land Management and AECOM as part of the environmental impact analysis for the Groundwater Project.

If you have any questions about this information, please contact Lisa Luptowitz at (702) 862-3789.

Sincerely,

Kenneth A. Albright, P.E.

Director, Groundwater Resources

KAA:LL:df

Attachment

c: Scott Ellis, AECOM

Lisa Luptowitz, Senior Environmental Planner, SNWA

Estimated Project Construction Costs Clark Lincoln and White Pine Counties Groundwater Development Project (Based on December 2008 Plan of Development)

Facilities -	Size	Quantity	Average Unit Cost	Cost	
		-	(\$ Millions / Quantity)	(\$ Millions)	
Proposed Facilities				4-i . <u>`</u>	
Lateral Pipelines	16 - 54 inches	103 miles	\$ 2.51	\$ 259	
Main Pipelines	52 - 84 inches	203 miles	\$ 5.73	\$ 1,163	
Pumping Stations	2,500 - 13,750 HP	5	\$ 16.4	\$ 82	
Pressure Reducing Stations		3	\$ 3.67	\$ 11	
Regulating Tanks	3 - 10 MG	6	\$ 5.33	\$ 32	
Storage Reservoir	40 MG	1	\$ 21	\$ 21	
Rate of Flow Control Stations (1)	5 - 134 MGD	8	\$ 5.25	\$ 42	
Water Treatment Facility	150 MGD	1	\$ 4	\$ 4	
Electrical Substations (2)	230 / 69 / 25 / 4 kV	12	\$ 3.67	\$ 44	
Power Lines	230 / 69 / 25 KV	323 miles	\$ 0.68	\$ 220	
Access Roads (3)	12 - 26 ft wide	305 miles	\$ 0.43	\$ 132	
	···	Proposed Facilities Construction Cost		\$ 2,010	
Future Facilities					
Groundwater Production Wells 14		120	\$ 1.4	\$ 168	
Collector Pipelines (4)	10 - 30 inches	180 miles	\$ 1.22	\$ 220	
Pumping Stations	400 HP	2	\$ 3.5	\$ 7	
Pressure Reducing Stations (Hydropower)		3	\$ 2.67	\$ 8	
Electrical Substations (2)	25 kV	2	\$ 2	\$ 4	
Power Lines 4	25 KV	180 miles	\$ 0.35	\$ 63	
	·	Future Facilities Construction Cost		\$ 470	

Construction Cost		2,480
Program Administration (5)		744
Total	\$	3,224
Approximate Capital Cost Estimate (6)	\$	3,200

Notes:

- 1. Located at each regulating tank, one at Storage Reservoir and one at existing SNNA facility at terminus.
- 2. Includes facility electrical substation at each pumping station
- 3. Excludes unimproved roads.
- 4. Number of facilities is an estimated average.
- Program Administration and Construction Monitoring, which is 30% of construction cost, includes administration, plenning, design, right-of-way, land acquisition, regulatory compliance, species monitoring, land restoration etc.
- Approximate estimated cost in July 2007 dollars, rounded to nearest \$100 million. Cost does not include confingency, which is typically 30% of construction cost in planning phases.
- 7. HP = Horse Power, MG = Million Gallions, MGD = Million Gallions per Day, MV = Idio Volts